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Abstract. It is well known that conservation laws impose limitations on the measurability 
of quantum mechanical observables. In particular, it has been shown that predictable and 
repeatable position measurements are impossible due to momentum conservation. Here 
we provide evidence that the assumption of repeatability may even be dropped. The 
consequences of this result for the concept of observable and of quantum theoretical reality 
are discussed elsewhere. 

1. Introduction 

Quantum mechanical observables have been represented by self-adjoint operators or, 
equivalently, by their spectral measures. It is well known that not all self-adjoint 
operators are observables; this is excluded for example by superselection rules. Further- 
more, in the development of a physical theory new laws may be discovered which 
impose restrictions on the measurability of certain ‘observables’. In particular, once 
the theory is rich enough to include a description of measurement as physical process 
one should check within a theory of measurement whether or not the ‘measurable 
quantities’ (observables) are indeed ‘observable’. Wigner (1952) showed that repeatable 
and predictable spin measurements are impossible due to conservation of angular 
momentum. The idea is strikingly simple: assume a unitary evolution operator U 
obeying 

U(cptOX0) = cp*Ox* (x+, x-) = 0. 
(cp* are the eigenstates of s,, the z component of spin, xo and ,y+ are the initial and 
final states of the measuring device, respectively.) Then the x component of angular 
momentum of the combined system cannot be conserved; this can immediately be seen 
from the equations 

~[(cp+*cp-)Oxol= cp+Ox+*cp-Ox- 
where the x-spin values are the same on the right-hand sides but not on the left-hand 
sides. 

This result has been generalised in various respects by Araki and Yanase (1960) 
and by Shimony and Stein (1971): in short, if an observable M admits repeatable and 
predictable measurements, and if LO I + I O  LA is a conserved quantity for the com- 
bined object and apparatus system then M commutes with L. More explicitly, if 
boundedness of L is assumed then the statement applies to arbitrary repeatable measure- 
ments: 

WE, O(~o)l  E, O Fm 
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(here E,,, are pairwise orthogonal M spectral spaces in the apparatus state space); i.e., 
arbitrary state changes within an M eigenspace can be admitted. On the other hand, 
if boundedness of L is not required then only ‘finitely distorting’ measurements in the 
sense described by Shimony and Stein (for example, measurements satisfying the 
projection postulate) can be taken into account. Only the second version with its 
comparably weak claim is applicable to unbounded conserved quantities as momentum. 
In this paper which was inspired mainly by the work of Shimony and Stein the 
question of (repeatable) position measurements in view of momentum conservation is 
investigated within a model. We shall show that, under reasonable assumptions, 
arbitrary predictable position measurements-whether repeatable or not-are forbidden 
due to conservation of momentum. 

2. A theorem 

We shall prove the following theorem. 

Theorem. Let X ,  = X2 = X 2 ( ~ ) ,  2; = T2(0, CO), 2; = Xz(-co, o) ,  v0e  X2, U a unitary 
operator on X =  XI 0 X2,  P = P,  0 I + I O  P2 the closed momentum (derivation) 
operator on X. Then U and P do not commute if ( I )  or (11) is fulfilled: 

(I)  There exist q+, 77- in X2, ( T+, v-) = 0, such that for all cp+ in 2; there are cp: 
in XI with 

U(cp*O 770) = cp:o 77,. 

(11) s u p p ( v o ) ~ [ - a ,  a ] ;  for all cp+ in 2: there exist cp: in XI, cp:=cp:[cp+], 
77, = 77+[cp+] in X 2  with supp(77,) E [a, CO], s u p p ( ~ - )  E [-CO, -a ]  such that 

u(cp*Orlo)=cp:O77*. 
Proot We assume commutativity of U and P ;  i.e., for all real q, U exp(iqP) - 
exp(iqP)U=O. Denote V,:=exp(iqP) =exp[ iq(P ,OI+IOP,) ]=  W,O W,, + q : =  

W,+, +‘(x) = + ( x + q )  for + in Xi ( i  = 1,2) .  Then consider the scalar product of 
V,cp+O~o=cp!O~09 with cp-0~~ 

(Vqcp+O770, cp-O77o)=(cp!, P-)(77041 770). 

( c p %  cp- ) ( r l& 770) = ( P i q ,  (91-)(77% 77-) vq ER. (*I 
From unitarity of U and commutativity of U and V, we obtain 

Now we proceed with part ( I ) :  continuity of the map q +  V, implies that, for all real 
E > 0, there exists real 6 > 0 such that 

l(778, 770)1> 1 - E and 1(77!, 7 7 - ) l <  E for 141 < 6. 

N:= /177+11 * 1177-11 =(llcp:ll l lcpl-l l)-l* 
We may assume 11 cp+ 1) = 1 )  cp- 1) = 11 vo)l = 1 .  Then unitarity of U gives 

Now choose cp+, cp- such that, for some q with / q /  < 6 , ~ :  = cp-. Then (*) implies 
(cp:q,cpL)+Oand ( l - ~ ) < ~ ~ ~ c p ~ ~ ~ ~  ~ ~ c p ~ ~ ~ = ~ / N , i . e .  N / (N+l )<~ , incon t rad ic t ion to  
the arbitrariness of E.  This proves ( I ) .  

To show part ( I I ) ,  take 191 # 0 small enough such that (7709, v0) f 0 and (T?, T-) = 0 
(lq1<2a). Further take cp+, cp- with (cp!, cp-) # O .  Then the left-hand side of (*) is 
non-zero whereas the right-hand side is zero. Thus U and P cannot commute. 
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Before turning to the physical implications some remarks are in order. The first 
part of our theorem rests on the somewhat restrictive assumption that the apparatus 
final states 7, are the same for all object initial states cp* in R:, respectively. This 
restriction is relaxed in the second part where we introduce the rather natural require- 
ment that the ‘pointer positions’ of the apparatus should be well distinguishable from 
each other: the zero ( qo) as well as the positive (q+) and negative ( 7-) positions are 
spatially separated (as is practically the case in real devices). Conditions ( I )  and (11) 
represent two types of position measurement procedures conflicting with momentum 
conservation. It is remarkable that no assumption on the object final states is necessary 
as was the case in the cited works (with the exception of the spin-; case). In particular, 
‘repeatability’ (9: in Xf) need not be postulated; we only apply the property of 
‘predictability’ (probability one for q* if cp* in RF). This gain has been paid by 
additional though plausible assumptions on the measuring apparatus. To get our result 
we reversed the proof direction of the previous authors who inferred commutativity 
of M and L from conservation laws. Here we start with the very structures of Q and 
P to show that U and P do not commute. 

3. Physical implications 

Our model result represents a strong indication that the usual notion of position 
observable (imprimitivity system for the Euclidean group) must be given up: predicta- 
bility, as represented by the spectral projections of Q, cannot be realised experimentally 
for principal reasons. As in the case of discrete bounded observables (see Wigner 
1952, Araki and Yanase 1960, Ghirardi et a1 1982), it can be seen (in the models by 
Busch (1985a, b)) that deviations from certainty can be made appreciably small by 
taking ‘large’ measuring devices. Thus it remains practically justified to employ the 
familiar position spectral measure for the description of localisation. However, from 
a theoretical point of view it is necessary to establish manifest consistency between 
concepts of physical language and physical laws formulated in that language. The 
question of which kind of localisation observable can be measured has been treated 
in a model in Busch (1985a). It turns out that so-called systems of covariance-certain 
positive operator valued measures-are the appropriate tools for dealing with localisa- 
tion in quantum mechanics (cf the monograph by Prugovecki 1984): 

xHQf(X) :=  (xx * f ) ( Q )  x E 3 ( R )  f E 21(R), 

These translation covariant POV measures which are compatible with momentum 
conservation correspond to measurements yielding only unsharp, smeared-out position 
values as indicated by the above generalised characteristic function xx *f: (See Busch 
(1985b) for a detailed measurement theoretic interpretation of unsharp observables.) 
Unsharpness implies that there is (usually) no object state admitting certain predictions 
about some position interval. It should be remarked that in a somewhat different 
treatment of measurement Schroeck (1985) arrives at a similar result: certain ‘stochastic’ 
observables admit measurements consistent with conservation laws. 

Position is one of the most fundamental observables; it can be argued that the 
introduction of any observable rests on position determination. Impossibility of 
position predictability then gives rise to lack of predictability in the case of all 
observables. This is exemplified in the spin case in Prugovecki (1977) and Schroeck 
(1982). A concept of unsharp reality has been developed in Busch (1985a) as an 
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extension of the famous Einstein-Podolsky-Rosen reality criterion to provide an 
adequate physical interpretation of stochastic, or unsharp observables: although the 
loss of predictability forbids speaking of properties of quantum systems (elements of 
reality) there exists a consistent notion of unsharp reality, or unsharp properties of 
systems. 

4. Outlook 

Shimony and Stein (1979) formulated the problem of repeatable position measurements 
in view of momentum conservation in terms of quite a similar model as ours. Our 
premises imply their assumptions; thus they are stronger. The main difference is that 
we demand spatial separation not only of the apparatus final states T+, 7- but of 
T+, T - ,  and vo. However, our conclusion is also remarkably stronger: not only repeat- 
able, but arbitrary predictable measurements are excluded. Thus we are left with the 
problem whether the assumption about T~ may be dropped. 
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